57 research outputs found

    Expanding the range of chromatic dispersion monitoring with two-photon absorption in semiconductors

    Get PDF
    Chromatic dispersion monitoring based on two-photon absorption (TPA) in semiconductors is very attractive because it does not need any high speed electronic devices (Inui, 2002). However, at present the dispersion monitoring range is limited to half of the Talbot dispersion which is defined as DTalbot = T2c/lambda2 (Wielandy, 2004), T is the period of the signal pulse sequence. In this work we propose a scheme to expand this monitoring range

    Influence of cavity lifetime on high-finesse microcavity two-photon absorption photodetectors

    Get PDF
    For optical pulse incidence as compared with continuous-wave incidence, the enhancement of two-photon absorption inside a high-finesse planar microcavity is reduced, the pulse inside the cavity and the cavity spectrum are broadened. The analysis shows that for transform-limited pulse incidence, the true pulsewidth and the cavity frequency resolution can be estimated if the cavity lifetime or the cavity bandwidth has been obtained from the reflection or transmission spectrum of the cavit

    High-speed chromatic dispersion monitoring of a two-channel WDM system using a single TPA microcavity

    Get PDF
    Chromatic dispersion monitoring of two 160 Gb/s wavelength channels using a TPA Microcavity is presented. As the microcavity exhibits a wavelength resonance characteristic, a single device could monitor a number of different WDM-channels sequentially

    Wavelength tuneable pulse monitoring using a Two-Photon-Absorption microcavity

    Get PDF
    Two Photon Absorption (TPA) is a non-linear optical-to-electrical conversion process that can be significantly enhanced by placing the active region within a resonance microcavity. The experiment confirmed the potential use of the microcavity structure for monitoring a single channel in multi-wavelength systems. The cavity can be designed for different applications depending on desired resonance width or cavity life time allowing the contrast ratio to be further improved. Due to the possibility of tuning the resonance wavelength by cavity tilting, a single device can be used to monitor a number of WDM channels without the need for additional optical filters

    High-sensitivity two-photon absorption microcavity autocorrelator

    Get PDF
    A GaAs-AlAs microcavity device has been used as a photodetector in an autocorrelator for measuring the temporal pulsewidth of 1.5-/spl mu/m optical pulses. Enhancement of the two-photon absorption photocurrent due to the microcavity structure results in an autocorrelation (average power times peak power) sensitivity of 9.3/spl times/10/sup -4/ (mW)/sup 2/, which represents two orders of magnitude improvement when compared with conventional autocorrelators

    Two-photon absorption in microcavities for optical autocorrelation and sampling

    Get PDF
    We have designed novel semiconductor microcavity structures for the enhancement of the two-photon absorption (TPA) photocurrent. We report a TPA autocorrelation technique for short optical pulses that uses the microcavity structure instead of a second harmonic generation crystal. Knowledge of these characteristics is important for implementation in applications such as optical switching and sampling in optical time division multiplexed (OTDM) communications systems

    Resonance tuning of two-photon absorption microcavities for wavelength-selective pulse monitoring

    Get PDF
    We show the potential use of a single photodetector for multichannel pulse monitoring. Two-photon absorption in a microcavity structure is used as the nonlinear optical technique for pulse monitoring. Angle tuning of the device allows the resonance to be tuned. For the device studied here that is optimized for 2-ps pulses, a possible tuning range of 55 nm is shown

    Design and fabrication of highly efficient non-linear optical devices for implementing high-speed optical processing

    Get PDF
    We present the design and fabrication of micro-cavity semiconductor devices for enhanced Two-Photon-Absorption response, and demonstrate the use of these devices for implementing sensitive autocorrelation measurements on pico-second optical pulses

    Optical signal processing via two-photon absorption in a semiconductor microcavity for the next generation of high-speed optical communications network

    Get PDF
    Due to the introduction of new broadband services, individual line data rates are expected to exceed 100 Gb/s in the near future. To operate at these high speeds, new optical signal processing techniques will have to be developed. This paper will demonstrate that two-photon absorption in a specially designed semiconductor microcavity is an ideal candidate for optical signal processing applications such as autocorrelation, sampling, and demultiplexing in high-speed wavelength-division-multiplexed (WDM) and hybrid WDM/optical time-division-multiplexed networks

    Two-photon-induced photoconductivity enhancement in semiconductor microcavities: a theoretical investigation

    Get PDF
    We describe a detailed theoretical investigation of two-photon absorption photoconductivity in semiconductor microcavities. We show that high enhancement (by a factor of >10, 000) of the nonlinear response can be obtained as a result of the microcavity effect. We discuss in detail the design and performance (dynamic range, speed) of such a device with the help of the example of an AlGaAs/GaAs microcavity operating at 900 nm. This device shows promise for low-intensity, fast autocorrelation and demultiplexing applications
    • 

    corecore